Towards Noncommutative Integrable Systems
نویسندگان
چکیده
We present a powerful method to generate various equations which possess the Lax representations on noncommutative (1+1) and (1+2)-dimensional spaces. The generated equations contain noncommutative integrable equations obtained by using the bicomplex method and by reductions of the noncommutative (anti-)self-dual Yang-Mills equation. This suggests that the noncommutative Lax equations would be integrable and be derived from reductions of the noncommutative (anti-)self-dual Yang-Mills equation, which implies the noncommutative version of Richard Ward conjecture. The integrability and the relation to string theories are also discussed. On leave of absence from university of Tokyo, Hongo. New e-mail: [email protected] e-mail: [email protected]
منابع مشابه
On Lax pairs and matrix extended simple Toda systems
Noncommutative theories have been studied and probed from different viewpoints (see reviews [18, 34, 48]). For instance, a number of noncommutative generalizations of integrable systems were presented (see, e.g., [9, 16, 17, 24, 39]). Solutions were investigated using the dressing method and Riemann-Hilbert problems, formulations, and properties such as infinite sets of conserved quantities wer...
متن کاملNoncommutative Solitons and Integrable Systems *
We review recent developments of soliton theories and integrable systems on noncommutative spaces. The former part is a brief review of noncommutative gauge theories focusing on ADHM construction of noncommutative instantons. The latter part is a report on recent results of existence of infinite conserved densities and exact multi-soliton solutions for noncommutative Gelfand-Dickey hierarchies....
متن کاملNoncommutative Ward’s Conjecture and Integrable Systems
Noncommutative Ward’s conjecture is a noncommutative version of the original Ward’s conjecture which says that almost all integrable equations can be obtained from anti-selfdual Yang-Mills equations by reduction. In this paper, we prove that wide class of noncommutative integrable equations in both (2+1)and (1+1)-dimensions are actually reductions of noncommutative anti-self-dual Yang-Mills equ...
متن کاملTowards Noncommutative Integrable Equations
We study the extension of integrable equations which possess the Lax representations to noncommutative spaces. We construct various noncommutative Lax equations by the Lax-pair generating technique and the Sato theory. The Sato theory has revealed essential aspects of the integrability of commutative soliton equations and the noncommutative extension is worth studying. We succeed in deriving va...
متن کاملOn Reductions of Noncommutative Anti-Self-Dual Yang-Mills Equations
In this paper, we show that various noncommutative integrable equations can be derived from noncommutative anti-self-dual Yang-Mills equations in the split signature, which include noncommutative versions of Korteweg-de Vries, Non-Linear Schrödinger, N -wave, Davey-Stewartson and Kadomtsev-Petviashvili equations. U(1) part of gauge groups for the original Yang-Mills equations play crucial roles...
متن کامل